RUS  ENG
Полная версия
ВИДЕОТЕКА



Periods of Negative-regular Continued Fractions for rational numbers and idempotents in the Modular group

С. В. Хрущев

Satbayev University



Аннотация: If $x<0$ then there exists the shortest developments of $x$ and $1/x$ into finite negative-regular continued fractions:
\begin{equation*} x=\frac{-1}{a_1}\,\underset{+}{}\frac{-1}{a_2}\,\underset{+\cdots+}{}\frac{-1}{a_k}\,,\quad \frac{1}{x}=\frac{-1}{c_1}\,\underset{+}{}\frac{-1}{c_2}\,\underset{+\cdots+}{}\frac{-1}{c_m}\,. \end{equation*}
These expansions are obtained by a generalized Euclidean algorithm. Then
\begin{equation}\label{minperiod2011} x\oplus s(x^{-1})\overset{def}{=}\{a_1,a_2,\ldots,a_{k-1},a_k+c_m,c_{m-1},\ldots,c_1\}\mapsto x \end{equation}
is the minimal period for $x$. We call this $b_k=a_k+c_m$ as the marked element of the minimal period $\{b_1,\ldots,b_n\}$.
Theorem. Let $P=\{b_1,\ldots, b_n\}$ be the minimal period of a rational number $x\neq -1$ with marked element $b_k$. Then the period $P^*$, in which $b_k$ is replaced with $b_k-2$, corresponds to a Möbius transform of order $2$. Any Möbius transform of order $2$ in the modular group is obtained this way.
Example 1:
\begin{equation*} \begin{aligned} &\{1,3,2,\overset{\blacktriangledown}{6},2\}\mapsto -\frac{7}{4}\\ &\{1,3,2,\overset{\blacktriangledown}{4},2\}\rightarrow-\frac{17\pm i}{10}\\ &\begin{matrix} &1&3&2&4&2&\\ \frac{1}{0}&\frac{0}{1}&\frac{-1}{1}&\frac{-3}{2}&\frac{-5}{3}&\frac{-17}{10}&\frac{-\mathbf{29}}{\mathbf{17}} \end{matrix} \end{aligned}\quad \begin{aligned} \frac{7}{4}&=1+\frac{1}{1}\,\underset{+}{}\,\frac{1}{2+1}\,;\\ \frac{\mathbf{29}}{\mathbf{17}}&=1+\frac{1}{1}\,\underset{+}{}\,\frac{1}{2}\,\underset{+}{}\,\frac{1}{2}\,\underset{+}{}\,\frac{1}{1}\,\underset{+}{}\,\frac{1}{1}\,. \end{aligned} \end{equation*}
Example 2:
\begin{equation*} \begin{aligned} &\{1,1,\overset{\blacktriangledown}{4},1,1\}\mapsto 1\\ &\{1,1,\overset{\blacktriangledown}{2},1,1\}\rightarrow \pm i\\ &\begin{matrix} &1&1&2&1&1&\\ \frac{1}{0}&\frac{0}{1}&\frac{-1}{1}&\frac{-1}{0}&\frac{-1}{-1}&\frac{0}{-1}&\frac{\mathbf{1}}{\mathbf{0}} \end{matrix} \end{aligned}\quad \begin{aligned} 1&=0+\frac{1}{0+1}\,;\\ \frac{\mathbf{1}}{\mathbf{0}}&=0+\frac{1}{0}\,\underset{+}{}\,\frac{1}{0}\,\underset{+}{}\,\frac{1}{0}\,. \end{aligned} \end{equation*}

This is a joint result with Mikhail Yu. Tyaglov.

Website: https://us06web.zoom.us/j/85797534479?pwd=ODU1bkNCUk1BNXZ6UEw1ejlsbHdIQT09

Список литературы
  1. P. L. Chebyshev, “Sur l'interpolation dans le cas d'un grand nombre de données fournies par les observations”, Mémoires de l'Académie des sciences de St.-Petersburg, 1:5 (1859), 1–81  mathscinet
  2. L. Euler. Introductio in analysin infinitorum, volI, Marcum-Michaelem Bousquet et socios, Lausannae 1748; Introduction to Analysis of the Infinite, Book I, Springer 1988(English translation).  mathscinet
  3. W. B. Jones, W. J. Thron, Continued Fractions. Analytic Theory and Applications, Encyclopedia of Mathematics and its Applications \number 11, Addison-Wesley, Reading, 1980  mathscinet
  4. S. V. Khrushchev, Continued Fractions and Orthogonal Polynomials: From Euler's point of view, Encyclopedia of Mathematics and its Applications \number 122, Cambridge University Press, 2008  mathscinet
  5. A. G. Kurosh, Theory of Groups, vol \bf{ 2}, AMS Chelsea, 1956  mathscinet
  6. O. Perron, Die Lehre von den Kettenbrüchen, vol \bf{ I}, Teubner, 1953  mathscinet
  7. O. Perron, Die Lehre von den Kettenbrüchen, II, Teubner, 1957  mathscinet
  8. A. Pringsheim, Vorlesungen über Zahlen und Funktionlehre, Teubner, Leipzig, 1916
  9. C. Smith, A Treatise on Algebra, MacMillan and Co., London,, 1882
  10. H. Tietze, “Uber Kriterien für Konvergenz und Irrationalität unendlicher Ketenbrüche”, Math. Ann., 70 (1911), 236–265  crossref  mathscinet  zmath


* Идентификатор: 857 9753 4479. Пароль: 782747


© МИАН, 2024