Аннотация:
Известная гипотеза, принадлежащая Борису Анатольевичу Дубровину,
устанавливает связь между симплектической и алгебраической геометрией
проективного многообразия. А именно, предлагает необходимые и достаточные условия
полупростоты в общей точке больших квантовых когомологий в терминах
строения производной категории когерентных пучков. В докладе будет
рассказано об обобщении гипотезы Дубровина, предложенным Александром
Кузнецовым и Максимом Смирновым, которое имеет дело с малыми
квантовыми когомологиями, и разобраны примеры, в которых данную гипотезу
удается проверить.