|
ВИДЕОТЕКА |
Летняя школа «Современная математика» имени Виталия Арнольда, 2023
|
|||
|
Многоликий солитон В. А. Клепцын |
|||
Аннотация: Эта история началась с того, как в 1834 году инженер Джон Скотт Расселл увидел, как шедшая по каналу баржа остановилась; из-под неё вырвалась одиночная (!) волна — и пошла по каналу, сохраняя свою форму. Такие волны впоследствие назвали солитонами. Теория солитонов — удивительно красивая, о ней можно прочесть целый большой курс, но мы лишь пройдём по одной маленькой «тропинке» этой теории. На протяжении этой прогулки мы посмотрим на солитоны с совсем разных углов: — от уравнения Кортевега—де Фриза, на которое можно смотреть с обычной точки зрения уравнений с частными производными и их физической интуиции; — продолжая счётным числом его первых интегралов — «законов сохранения»; — продолжая парами Лакса, из которых эти первые интегралы можно увидеть; — продолжая конструкцией пар Лакса через псевдо-дифференциальные операторы; — и закончим формулами для солитонов, в которых возникает алгебраическая геометрия — комплексные кривые, заданные уравнениями Пререквизиты. Слушателям будут очень полезны знакомство с понятием собственного значения и собственного вектора линейного преобразования, и готовность не бояться обыкновенных дифференциальных уравнений. Website: https://mccme.ru/dubna/2023/courses/kleptsyn.html |