RUS  ENG
Полная версия
ВИДЕОТЕКА

Вероятностные методы в анализе и теория аппроксимации 2025
28 ноября 2025 г. 16:50, г. Санкт-Петербург, Факультет математики и компьютерных наук СПбГУ (14-ая линия В. О., 29б), ауд. 201


Diagonal Frobenius Number via Gomory Relaxation and Discrepancy

D. V. Gribanovab

a Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Moscow Region
b National Research University – Higher School of Economics in Nizhny Novgorod

Аннотация: In this work, we consider an ILP problem of the form: find a non-negative integer vector $(x)$ satisfying the system $(A x = b)$ with given integer inputs $(A, b)$. The following fact is known: if the system $(A x = b)$ has a non-negative real solution $x$ whose components are all sufficiently large, then the system also has a non-negative integer solution $(z)$. The minimal required magnitude of the components of $(x)$ is called the diagonal Frobenius number of the matrix $(A)$ and represents a natural generalization of the classical Frobenius number. Moreover, under stronger conditions on the magnitude of the components of $(x)$, the corresponding solution $(z)$ can be found by a polynomial-time algorithm. As our main result, we present new bounds on the diagonal Frobenius number, which significantly improve all previously known bounds, including those for the polynomially solvable case.
This is a joint work with Nikita Kasyanov, LATNA & HSE University.

Язык доклада: английский

* Zoom ID: 675-315-555, Password: mkn


© МИАН, 2025