|
|
| ВИДЕОТЕКА |
|
Третья Российско-Китайская научная конференция по комплексному анализу, алгебре, алгебраической геометрии и математической физике
|
|||
|
|
|||
|
McMullen's formula and a multidimensional analog of the Weierstrass A. V. Shchuplev Institute of Mathematics and Computer Science, Siberian Federal University, Krasnoyarsk |
|||
|
Аннотация: In 1899 G. Pick found a simple formula relating the area $$ \mathrm{Area}\left(P\right)=I+\frac{B}{2}-1. $$ However, this formula can not be simply extended even to three-dimensional case as Reeve's example demonstrates.Instead of one simple formula there exist several formulas, obtained by combinatorial or number-theoretical methods, or by methods of algebraic geometry. One such formula due to P.McMullen says that for an integer polyhedron with centrally-symmetric facets its volume is equal to the sum of all solid angles at each its integer point of the polyhedron. A multidimensional analog of the Weierstrass $$ \zeta(z)=\eta(z)+\sum_{\gamma\in{\mathbb Z^{2n}\smallsetminus \{0\}}}\left(\eta(z-\gamma)+\eta(\gamma)+\sum_{i=1}^{n}\left(\frac{\partial\eta}{\partial z_{i}}(\gamma)z_{i}+\frac{\partial\eta}{\partial\bar{z}_{i}}(\gamma)\bar{z}_{i}\right)\right), $$ where Язык доклада: английский |
|||