RUS  ENG
Полная версия
ВИДЕОТЕКА

Новые направления в математической и теоретической физике
6 октября 2016 г. 12:30, г. Москва, МИАН, ул. Губкина, д. 8


On the asymptotical normality for lattice Hamiltonian dynamics. Energy transport equation

Tatiana Dudnikova

Keldysh Institute of Applied Mathematics of Russian Academy of Sciences, Moscow



Аннотация: We consider the lattice dynamics in the whole space (in the half-space) and study the Cauchy (respectively, mixed initial-boundary value) problem with random initial data. We prove the weak convergence of statistical solutions to a limit for large time. Further, we assume that the initial measure enforces slow spatial variation on the linear scale $1/\varepsilon$. We check that for times of order $1/\varepsilon$, the limit covariance changes in time and is governed by the energy transport equation.

Язык доклада: английский


© МИАН, 2025