|
ВИДЕОТЕКА |
Летняя школа «Современная математика», посвященная памяти Виталия Арнольда, 2017
|
|||
|
Математика мозга: математические модели в нейронауке. Занятие 4 Д. С. Волк |
|||
Аннотация: Всякий раз, когда мы пытаемся количественно описать поведение объектов или систем объектов окружающего нас мира, возникает математическая модель. Хорошая, годная модель отличается следующими свойствами:
Например, законы Ньютона позволяют построить модель падения яблока на землю. Яблоко заменяется на точку, которая движется с постоянным ускорением в направлении земли. Если нам важно уметь определять мгновенную скорость яблока и время падения, то это прекрасная модель, удовлетворяющая всем вышеперечисленным свойствам. Работа человеческого мозга неизмеримо сложнее, чем падение яблока. Даже отдельная нервная клетка — нейрон — представляет собой весьма сложную биологическую систему. Однако, оказывается, что всю самую важную его функциональность можно свести к небольшому числу дифференциальных уравнений. Я покажу, как методы качественной теории дифференциальных уравнений (по-простому, теории картинок из стрелочек, нарисованных на плоскости или в пространстве) позволяют делать верные предсказания о поведении нейронов в ситуациях, ранее не наблюдавшихся экспериментально. Все необходимые сведения про картинки из стрелочек будут рассказаны в процессе курса. Если останется время, я также планирую разобрать несколько моделей поведения популяций нейронов: возникновение колебательной активности как в смешанных сетях возбуждающих и тормозных нейронов, так и в сетях сплошь из тормозных, а также модель ассоциативной памяти. Программа-максимум:
Website: https://www.mccme.ru/dubna/2017/courses/volk.html
|