RUS  ENG
Полная версия
ВИДЕОТЕКА



Гипотеза Якобиана, нестандартный анализ и антиквантование. Занятие 1

А. Я. Канель-Белов



Аннотация: Пусть $F:C_n \to C_n$ есть полиномиальное отображение. Чтобы оно было обратимо, необходимо, чтобы оно было локально обратимо. В этом случае определитель матрицы Якоби есть ненулевая константа. Гипотеза Якобиана утверждает, что если $f_i$ — полиномы и определитель матрицы Якоби $\det (\partial f_i/ \partial x_j)$ равен единице, то отображение обратимо.
Наиболее перспективным представляется подход, связанный с редукцией по модулю бесконечно большого простого $p$ и использованию идей, возникших в квантовой механике.
Предполагается рассказать о гипотезе Диксмье, ее связи с гипотезой Якобиана, объяснить начальные понятия нестандартного анализа (что такое редукция по модулю бесконечно большого простого $p$), о гипотезе Концевича, о подъеме автоморфизмов.
Лектор поддержан грантом РНФ 17-11-01377.

Website: https://www.mccme.ru/dubna/2017/courses/kanel.html
Цикл лекций


© МИАН, 2024