|
ВИДЕОТЕКА |
Летняя школа «Современная математика», посвященная памяти Виталия Арнольда, 2017
|
|||
|
Границы разрешимости в арифметической геометрии. Занятие 1 Г. Б. Шабат |
|||
Аннотация: Между двумя разделами математики, хорошо известными школьникам — арифметикой и геометрией — есть важное различие: геометрия разрешима, а арифметика неразрешима. Несколько упрощённое толкование этих утверждений заключается в том, что компьютерную программу, способную решить «все» геометрические задачи, написать можно, а для арифметических задач такой программы не существует. Точнее, не существует даже алгоритма, который по системе полиномиальных уравнений с целыми коэффициентами определял бы, имеет ли система хотя бы одно целочисленное решение; в этом заключается отрицательное решение десятой проблемы Гильберта, полученное в прошлом веке Ю. В. Матиясевичем. Арифметика и геометрия сходятся в одной из самых трудных областей взрослой математики — в арифметической геометрии. Здесь сосуществуют и изощрённые алгоритмы, решающие некоторые классы задач, и результаты об алгоритмической неразрешимости; во многих случаях ответы на вопросы об алгоритмической разрешимости неизвестны. Границы между разрешимым и неразрешимым часто неясны, и одна из основных целей курса — сформулировать соответствующие предположения на понятном школьникам языке. Для понимания основной части курса не надо знать ничего, но надо быть готовыми заниматься довольно трудной математикой. Полезно, однако, иметь представление о роде алгебраической кривой и о кривизне поверхности. Возможно, занятия будут сопровождаться компьютерными демонстрациями. Программа курса
Website: https://www.mccme.ru/dubna/2017/courses/shabat.html
|