|
ВИДЕОТЕКА |
Летняя школа «Современная математика», посвященная памяти Виталия Арнольда, 2017
|
|||
|
Скрученные кролики. Лекция 1 В. А. Тиморин |
|||
Аннотация: Скручивать уши у настоящих кроликов, разумеется, никто не будет. Под кроликом имеется в виду «кролик Дуади» — фрактальная фигура, возникающая как множество точек Многочлен Отображения кролика, антикролика и самолета представляют собой интересные примеры динамических систем. На примере этих отображений интересно проиллюстрировать замечательную теорию В. Терстона, которая позволяет рассматривать такие алгебраические объекты, как квадратные многочлены, топологически. Я расскажу про работу Л. Бартольди и В. Некрашевича, описывающую результат скручивания ушей у кролика Дуади. Website: https://www.mccme.ru/dubna/2017/courses/timorin.html
|