|
ВИДЕОТЕКА |
Летняя школа «Современная математика» имени Виталия Арнольда, 2018
|
|||
|
Пространства матриц и многогранники, занятие 1 А. А. Айзенберг |
|||
Аннотация: В этом курсе мы изучим взаимосвязь между топологией пространств симметричных матриц и комбинаторикой выпуклых многогранников. Начнем с краткого повторения определений и стандартных фактов про собственные значения (спектр) симметричных матриц. Одним из важных объектов, возникающих при исследовании топологии матричных пространств является пермутоэдр — выпуклый многогранник с богатой геометрией и комбинаторикой. Мы изучим классическую теорему Хорна–Шура, которая утверждает, что диагонали всех симметричных матриц с заданным спектром образуют пермутоэдр. Далее перейдем к знаменитому многообразию Томеи: пространству всех трехдиагональных симметричных матриц с фиксированным спектром: опишем его связь с пермутоэдром, а также, возможно, затронем более общую конструкцию малых накрытий — пространств, склеенных из Website: https://www.mccme.ru/dubna/2018/courses/ayzenberg.html
|