|
ВИДЕОТЕКА |
Летняя школа «Современная математика» имени Виталия Арнольда, 2018
|
|||
|
Конечномерные алгебры и действия групп, занятие 1 И. В. Аржанцев |
|||
Аннотация: В этом курсе изучается такой замечательный и вполне элементарный объект, как конечномерные коммутативные ассоциативные алгебры над комплексными числами. Здесь достаточно легко доказать первые структурные результаты, но получить полную классификацию едва ли возможно. Мы обсудим различные техники работы с конечномерными алгебрами (максимальные идеалы и локальные алгебры, фильтрации и градуировки, последовательность Гильберта-Самюэля и цоколь) и получим явное описание алгебр малых размерностей. Оказывается, конечномерные алгебры тесно связаны с действиями с открытой орбитой коммутативных групп матриц на аффинных и проективных пространствах. Мы объясним эту связь. В процессе объяснения естественно возникнут такие понятия как экспонента линейного оператора, представление группы и циклический модуль, алгебра Ли и ее универсальная обертывающая. На последней лекции мы поговорим о действиях с открытой орбитой коммутативных групп матриц на различных проективных многообразиях (грассманианах и многообразиях флагов, взвешенных проективных пространствах) и сформулируем несколько нерешенных проблем. Предполагается, что слушатели знакомы с комплексными числами и основами линейной алгебры. Все остальные понятия будут определены и проиллюстрированы на примерах. Website: https://www.mccme.ru/dubna/2018/courses/arjantsev.html
|