RUS  ENG
Полная версия
ВИДЕОТЕКА

Летняя школа «Современная математика» имени Виталия Арнольда, 2018
20 июля 2018 г. 15:30, г. Дубна, Московская область, г. Дубна, дом отдыха «Ратмино»


Числа Каталана: комбинаторика и алгебраическая геометрия, занятие 1

И. В. Лосев



Аннотация: Числа Каталана — важный комбинаторный объект со множеством разных интерпретаций и вариаций. В этих лекциях мы сконцентрируемся на рациональных числах Каталана и их $q$- и $(q,t)$- деформациях. Такие числа параметризуются парой $(a,b)$ взаимно-простых натуральных чисел, случай классических чисел Каталана соответствует $a=n$ и $b=n+1$. Замечательное наблюдение, принадлежащее Марку Хэйману, состоит в том, что классические числа Каталана и их деформации допускают алгебро-геометрическую интерпретацию в терминах геометрии схем Гильберта точек на плоскости. Эта схема Гильберта параметризует идеалы коразмерности $n$ в алгебре многочленов $\mathbb{C}[x,y]$ и очень важна в разных областях математики, включая теорию представлений и теорию узлов. Основная цель этого курса — это объяснить связь между схемой Гильберта и (деформированными) числами Каталана. Необходимые сведения из алгебраической геометрии будут объяснены по ходу дела.

Website: https://www.mccme.ru/dubna/2018/courses/losev.html
Цикл лекций


© МИАН, 2024