RUS  ENG
Полная версия
ВИДЕОТЕКА

Летняя школа «Современная математика» имени Виталия Арнольда, 2019
22 июля 2019 г. 17:15, г. Дубна, Московская область, г. Дубна, дом отдыха «Ратмино»


Фризы и цепные дроби, занятие 1

Е. Ю. Смирнов



Аннотация: Фризы были определены в работах Конвея и Коксетера в 1973 г., однако всплеск интереса к ним произошел в недавнее время в связи с появившейся в начале 2000-х гг. теорией кластерных алгебр. Фриз — это таблица из чисел, удовлетворяющая условию унимодальности: для любых четырех чисел $a,b,c,d$ в вершинах единичного ромба верно равенство $ad-bc=1$, и граничным условиям: первая и последняя строки состоят из одних единиц. Такие таблицы обладают рядом загадочных свойств: например, они оказываются периодичными с периодом $m+3$, где $m$ — число неединичных строк, а фризы с целыми положительными элементами соответствуют триангуляциям $(m+3)$-угольника.
Мы обсудим эти свойства фризов и выясним, как они связаны с различными способами разложения рационального числа в цепную дробь, сложением дробей «по Фарею» и при чем тут действие группы PSL(2,ℤ).

Website: https://mccme.ru/dubna/2019/courses/smirnov.html
Цикл лекций


© МИАН, 2024