|
ВИДЕОТЕКА |
Летняя школа «Современная математика» имени Виталия Арнольда, 2021
|
|||
|
В. А. Клепцын |
|||
Аннотация: По определению, эллиптическая функция — это “хорошая” двоякопериодическая функция на комплексной плоскости. Одна из самых замечательных эллиптических функций, и одновременно самая простая из них —
Наконец, естественно появляющиеся тут ряды Эйзенштейна — самые простые примеры модулярных форм, возникающих во многих и многих областях математики. Мы коснёмся двух связанных их проявлений — нахождения числа представлений натуральных чисел в виде суммы четырёх квадратов и теории решёток в многомерных пространствах. Пререквизиты. Курс рассчитан как на студентов, так и на школьников, хорошо знакомых с комплексными числами. Я собираюсь сообщить все необходимые факты из комплексного анализа (и предложить в них поверить), но понимание самих комплексных чисел всё-таки для восприятия курса необходимо. Website: https://mccme.ru/dubna/2021/courses/kleptsyn.html
|