RUS  ENG
Полная версия
ВИДЕОТЕКА

Летняя школа «Современная математика» имени Виталия Арнольда, 2021
20 июля 2021 г. 17:15, Московская область, г. Дубна, дом отдыха «Ратмино»


Танглы Конвея и модулярная группа. Семинар 1

В. А. Кириченко


https://youtu.be/-kU7IoNwJ84

Аннотация: Рациональные танглы Конвея — это переплетения двух канатов, которые 4 человека с двумя канатами могут станцевать из «начальной позиции» с помощью движений «твист» и «поворот»:
По каждому танглу можно определить рациональное число — инвариант тангла относительно естественного отношения эквивалентности (два тангла эквивалентны, если один можно получить из другого, двигая канаты, но не меняя положения их концов). У твистов и поворотов есть и другие инкарнации — можно определить их действие на полуокружностях диаграммы Фарея и на параллелограммах с вершинами в узлах клетчатой бумаги. Всё это примеры действия модулярной группы. В курсе планируется подробно разобрать все приведённые выше примеры, изучить их взаимосвязи и попутно познакомиться с важными математическими объектами, такими как модулярная группа.
    Программа курса
  • Как станцевать тангл Конвея и построить его полный инвариант. Узлы, танглы и зацепления: зачем Конвей придумал танглы.
  • Диаграмма и дроби Фарея. Комплексная плоскость и её дробно-линейные преобразования. Связь диаграммы Фарея с разложением рационального числа в цепную дробь.
  • Параллелограммы на клетчатой бумаге. Линейные отображения плоскости и преобразования решётки. Модулярная группа.
  • Как склеить тор из плоскости с решёткой. Связь между параллелограммами и танглами: естественная конструкция инвариантов танглов.

Пререквизиты: курс ориентирован на школьников, и не предполагает никаких знаний, выходящих за рамки стандартной школьной программы.

Website: https://mccme.ru/dubna/2021/courses/kirichenko.html
Цикл лекций


© МИАН, 2024