RUS  ENG
Полная версия
ВИДЕОТЕКА

Летняя школа «Современная математика» имени Виталия Арнольда, 2021
25 июля 2021 г. 17:15, Московская область, г. Дубна, дом отдыха «Ратмино»


Плоские разбиения и формула Макмагона. Семинар 1

Е. Ю. Смирнов


https://youtu.be/R_z0zCG4VzM

Аннотация: Диаграмма Юнга — это классический комбинаторный объект, описывающий разбиение натурального числа в сумму неупорядоченных слагаемых. Его удобно изображать в виде фигуры из клеточек, наподобие изображенной на рисунке.
У диаграмм Юнга есть естественное трехмерное обобщение — пирамида из кубиков, которая называется плоским разбиением. Основная задача, которой мы будем заниматься в этом курсе — это подсчет количества таких пирамид, размеры которых не превышают заданных параметров, и нахождение для него производящей функции. Эту задачу (ответ в ней называется формулой Макмагона) мы решим несколькими способами и попутно изучим различные связанные с ней понятия из комбинаторики и теории симметрических функций.
    Программа курса
  • Диаграммы и таблицы Юнга. Плоские разбиения. Подсчет числа плоских разбиений при помощи непересекающихся путей. Трюк Линдстрема — Гесселя — Вьенно, первое доказательство формулы Макмагона.
  • Симметрические функции. Многочлены Шура. Подсчет числа плоских разбиений с помощью специализаций многочленов Шура. Второе доказательство формулы Макмагона.
  • Тождество Коши для многочленов Шура. Третье доказательство формулы Макмагона.
  • Симметрические плоские разбиения. Тождество Шура, теорема Макдональда о производящей функции для симметрических плоских разбиений.

Пререквизиты: слушателям хорошо бы знать, что такое многочлен и что такое определитель.

Website: https://mccme.ru/dubna/2021/courses/smirnov.html
Цикл лекций


© МИАН, 2024