|
ВИДЕОТЕКА |
Летняя школа «Современная математика» имени Виталия Арнольда, 2022
|
|||
|
Проективные плоскости с разных сторон. Семинар 1 А. А. Гайфуллин |
|||
Аннотация: Курс будет состоять из четырех сюжетов, объединенных общим объектом исследования, в качестве которого выступят проективные плоскости, но довольно разных по подходам и методам. Первый сюжет будет касаться абстрактной теории проективных плоскостей. Обычная проективная плоскость, получаемая добавлением бесконечно удаленных точек к привычной нам евклидовой плоскости, обладает следующими двумя свойствами: (1) любые две различные точки лежат на единственной прямой и (2) любые две различные прямые пересекаются в единственной точке. Можно взять эти два свойства в качестве определения и называть проективной плоскостью любое множество (элементы которого называются точками) с набором выделенных подмножеств (называемых прямыми), если выполнены условия (1) и (2). (Обычно еще добавляют условие, что найдутся четыре точки, никакие три из которых не лежат на одной прямой.) Важнейшим классом проективных плоскостей являются проективные плоскости Второй сюжет относится к топологии проективных плоскостей В третьем сюжете мы перейдем от топологии к геометрии: научимся вводить на проективных плоскостях Наконец, последний сюжет будет посвящен неассоциативной алгебре октав Пререквизиты. Я буду рассчитывать на знакомство слушателей с началами линейной алгебры (операторы, матрицы, собственные векторы), комплексными числами и основными свойствами полей. Знакомство с теорией конечных полей, топологией и дифференциальной геометрией предполагаться не будет. Предупреждение. Это не будет курс по проективной геометрии — я не планирую обсуждать такие классические темы, как проективные преобразования, двойное отношение, коники на проективной плоскости и т. п. Website: https://mccme.ru/dubna/2022/courses/gaifullin.html
|