RUS  ENG
Полная версия
ВИДЕОТЕКА

Летняя школа «Современная математика» имени Виталия Арнольда, 2023
19 июля 2023 г. 15:30, Московская область, г. Дубна, дом отдыха «Ратмино»


Проблема Бернсайда и геометрическая теория групп. Семинар 1

А. Я. Белов, И. А. Иванов-Погодаев, А. А. Белецкий


https://youtu.be/opXKMe38Ehg?si=Y6dEMCVU2k_P37PB

Аннотация: Рассмотрим конечно-порожденную группу с тождеством $x^n=e\;\forall x$. Будет ли она конечна? При $n=2$ ответ — да, и это упражнение для семинарского занятия. При $n=3$ ответ тоже да, но это уже задача для международной студенческой олимпиады. При $n=4, 6$ ответы тоже — да, но это проблемы стоявшие десятилетиями. При $n=5$ ответ неизвестен!

В свое время П.С.Новиков объявил, что при достаточно больших $n$ (порядка десятков) есть контрпримеры. А.И.Мальцев (глава алгебраической школы) прокомментировал его доклад так: это главное событие некоммутативной алгебры 20 века. Для доведения результата до конца П.С.Новиков пригласил С.И.Адяна. В итоге получились оценки на экспоненту сперва порядка нескольких тысяч, потом — сотен. Недавно другим методом Аткарская, Рипс, Кэтрин Тент получили улучшенные оценки.

Первоначальное доказательство занимало несколько сот страниц. Однако теперь имеется существенно более короткое доказательство. Курс посвящен решению проблемы Бернсайда методом канонических форм, разработанных Рипсом (не опубликовано).

Website: https://mccme.ru/dubna/2023/courses/kanel.html
Цикл лекций


© МИАН, 2024