![]() |
|
ВИДЕОТЕКА |
|
От Пуанкаре до Перельмана. Лекция 1 В. В. Успенский |
|||
Аннотация: В 1900 году Пуанкаре сформулировал (неверную) теорему, дающую топологическую характеризацию трёхмерной сферы. В 1904 году он нашел замечательный контрпример к собственной теореме — так называемую сферу Пуанкаре (её можно описать как пространство додекаэдров, вписанных в заданную сферу). Правильный вариант своей теоремы Пуанкаре сформулировал в виде гипотезы, отметив, что её обсуждение «увело бы нас слишком далеко». Пуанкаре был прав — для доказательства его гипотезы понадобилось сто лет. Столетняя история гипотезы Пуанкаре отмечена яркими событиями. В 1960-е годы удалось доказать В курсе будет изложена история гипотезы Пуанкаре — с точными определениями и формулировками, но без полных доказательств. Будут объяснены понятия, необходимые для понимания различных версий (топологическая, гладкая, кусочно-линейная) гипотезы Пуанкаре: многообразие, гомотопическая эквивалентность, фундаментальная группа. Слушатели узнают о классификации двумерных компактных многообразий («сферы с ручками и пленками Мебиуса»), об экзотических гладкостях на сферах и на Предполагается, что слушатели имеют некоторое представление о многомерных евклидовых пространствах и не боятся слов «абелева группа» и «гомоморфизм».
|