RUS  ENG
Full version
SEMINARS

V. I. Smirnov Seminar on Mathematical Physics
December 21, 2020 16:30, St. Petersburg, zoom online-conference

A joint meeting of V. I. Smirnov seminar on mathematical physics and seminar on spectral theory in the International Euler institute, St. Petersburg

Nodal sets, Quasiconformal mappings and how to apply them to Landis' conjecture.

A. A. Logunov

Princeton University

Abstract: A while ago Nadirashvili proposed a beautiful idea how to attack problems on zero sets of Laplace eigenfunctions using quasiconformal mappings, aiming to estimate the length of nodal sets (zero sets of eigenfunctions) on closed two-dimensional surfaces. The idea have not yet worked out as it was planned. However it appears to be useful for Landis' Conjecture. We will explain how to apply the combination of quasiconformal mappings and zero sets to quantitative properties of solutions to $\Delta u + V u =0$ on the plane, where $V$ is a real, bounded function. The method reduces some questions about solutions to Shrödinger equation $\Delta u + V u =0$ on the plane to questions about harmonic functions. Based on a joint work with E.Malinnikova, N.Nadirashvili and F. Nazarov.


© Steklov Math. Inst. of RAS, 2024