|
SEMINARS |
Contemporary Problems in Number Theory
|
|||
|
On irrationality measure functions for several real numbers Rudykh Victoria Technion - Israel Institute of Technology |
|||
Abstract: For $$\mathbf{\sigma}(t): \{1, 2, 3, \dots, n\} \rightarrow \{ \sigma_1, \sigma_2, \sigma_3, \dots, \sigma_n \},$$ $$\psi_{\alpha_{\sigma_1}}(t) > \psi_{\alpha_{\sigma_2}}(t) > \psi_{\alpha_{\sigma_3}}(t) > \dots > \psi_{\alpha_{\sigma_n}}(t)$$ of irrationality measure functions $\psi_{\alpha}(t) = \min\limits_{1 \leq q \leq t} \| q\alpha\|$. Let $$ n \leq \frac{k(k+1)}{2}.$$ This result is optimal. Language: English |