|
СЕМИНАРЫ |
Семинар Добрушинской лаборатории Высшей школы современной математики МФТИ
|
|||
|
Комплексные числа вращения Н. Б. Гончарук Государственный университет – Высшая школа экономики |
|||
Аннотация: Если взять цилиндр и склеить его верхнюю и нижнюю окружности по повороту, получится тор. На торе будет естественная комплексная структура; модуль такой эллиптической кривой легко посчитать. При склеивании не по повороту, а по другому (аналитическому) диффеоморфизму окружности, снова получается эллиптическая кривая. Что произойдет с её модулем, если высоту цилиндра устремить к нулю? (вопрос и конструкция В.И.Арнольда, 1978). Ответ зависит от динамических свойств диффеоморфизма окружности. Тут возникает новое фрактальное множество ("пузыри"), имеющее отношение к известным языкам Арнольда. В совместной работе Xavier Buff-а и докладчика получено довольно полное описание этого множества. |