RUS  ENG
Полная версия
СЕМИНАРЫ

Комплексные задачи математической физики
11 октября 2018 г. 16:00, г. Москва, МИАН, комн. 430 (ул. Губкина, 8)


Implicit planar webs and singularities

A. Hénaut

Institut de Mathématiques de Bordeaux, Université Bordeaux

Аннотация: Planar web geometry deals with families of foliations by curves on surfaces. In the complex setting, locally in ${\mathbb C}^2$ or on ${\mathbb P}^2({\mathbb C})$, a $d$-planar web ${\cal W}(d)$ is given by the generic family of integral curves of an analytic or algebraic differential equation $F(x,y,y')=0$ with $y'$-degree $d$. Invariants of these configurations as abelian relations (related to Abel's addition theorem) or infinitesimal symmetries will be discussed, in the nonsingular case and through the singularities and their residues as well. This viewpoint enlarges the qualitative study of such equations. Basic examples will be given from different domains including classic algebraic geometry and WDVV-equations. Standard results and some open problems will be mentioned. By using connections methods “à la Cartan-Spencer” or “à la Chern” new results on regularity and monodromy questions will be presented.

Язык доклада: английский


© МИАН, 2024