RUS  ENG
Полная версия
СЕМИНАРЫ

Общегородской семинар по математической физике им. В. И. Смирнова
22 февраля 2021 г. 16:30, г. Санкт-Петербург, онлайн-конференция в zoom


Extremals for Morrey's inequality

E. Lindgren

Uppsala University, Department of Mathematics


https://youtu.be/_NR_vnllsPU

Аннотация: A celebrated result in the theory of Sobolev spaces is Morrey's inequality, which establishes in particular that for a bounded domain $\Omega\subset \mathbb{R}^n$ and $p>n$, there is $c>0$ such that
$$ c\|u\|^p_{L^\infty(\Omega)} \le \int_\Omega|Du|^pdx, \quad u\in W^{1,p}_0(\Omega). $$
Interestingly enough the equality case of this inequality has not been thoroughly investigated (unless the underlying domain is $\mathbb{R}^n$ or a ball). I will discuss uniqueness properties of extremals of this inequality and related inequalities. Extremals of the above inequality are minimizers of the nonlinear Rayleigh quotient
$$ \inf\left\{\frac{\int_\Omega|Du|^pdx}{\| u\|_{L^\infty(\Omega)}^p}:u\in W_0^{1,p}(\Omega)\setminus\{0\}\right\}. $$
In particular, I will present the result that in convex domains, extremals are determined up to a multiplicative factor. I will also explain why convexity is not necessary and why stareshapedness is not sufficient for this result to hold. The talk is based on results obtained with Ryan Hynd.

Язык доклада: английский


© МИАН, 2024