RUS  ENG
Полная версия
СЕМИНАРЫ

Семинар лаборатории теории функций "Современные проблемы комплексного анализа"
26 декабря 2024 г. 12:00, г. Ташкент, Онлайн на платформе Zoom


Determining the order of time and spatial fractional derivative

I. Sulaymonov

National University of Uzbekistan named after M. Ulugbek, Tashkent

Аннотация: We study the initial boundary value problem for the equation $D^\rho_t u(x,t)+ (-\triangle)^\sigma u(x,t)=0$ in the $N$-dimensional domain $\Omega$ with the homogeneous condition Dirichlet. The fractional derivative is taken in Caputo’s sense. The existence and uniqueness of a strong solution for an arbitrary initial function from $L_2(\Omega)$ is proved. Next, we studied the inverse problem of simultaneously determining the order $\rho$ and the degree of the Laplace operator $\sigma$. Additional conditions are found that guarantee both the existence and uniqueness of solutions to the inverse problem under consideration.

Website: https://us02web.zoom.us/j/8022228888?pwd=b3M4cFJxUHFnZnpuU3kyWW8vNzg0QT09


© МИАН, 2025