RUS  ENG
Полная версия
СЕМИНАРЫ



Перекрестки и дуги узлов с топологической точки зрения

И. М. Никонов

Московский государственный университет имени М. В. Ломоносова, механико-математический факультет

Аннотация: Комбинаторный подход к теории узлов рассматривает узлы как диаграммы по модулю движений Рейдемейстера. Многие конструкции инвариантов узлов (например, индексные многочлены, раскраски квандлами и т.д.) используют элементы диаграмм, такие как дуги и перекрестки, приписывая им инвариантные метки.
Универсальные инвариантные метки, несущие наибольшую информацию, можно рассматривать как классы эквивалентности дуг и перекрестков по соотношениям, отождествляющим соответствующие элементы диаграмм, связанных движением Рейдемейстера. Мы можем назвать эти классы эквивалентности дугами и перекрестками узла. Оказывается, множества дуг и перекрестков узла допускают топологическое описание как множества классов изотопии указателей элементов диаграммы.
Переходя от изотопических классов указателей элементов диаграмм к гомотопическим, мы получаем алгебраические объекты, которые отвечают за раскраску элементов диаграмм. Для дуг этими алгебраическими объектами являются квандлы; для областей – частичные тернарные квазигруппы; для полудуг – биквандлоиды; а для перекрестков – кроссоиды.
Для произвольного узла мы определяем комплекс пересечений узла и класс гомологий перекрестков диаграммы. В некотором смысле комплекс пересечений объединяет гомологии тройных скобок Небжидовского, биквандлов и кроссоидов и обобщает коциклический инвариант тройных скобок и биквандлов для узлов.


© МИАН, 2025