RUS  ENG
Полная версия
СЕМИНАРЫ

Комплексные задачи математической физики
31 марта 2014 г. 16:00, г. Москва, МИАН, комн. 430 (ул. Губкина, 8)


Перечисляющие решения интегрируемых иерархий

С. К. Ландо

Национальный исследовательский университет «Высшая школа экономики», г. Москва

Аннотация: Интегрируемые иерархии уравнений в частных производных появились как инструмент описания поведения волн специального вида. Оказалось, однако, что среди их решений есть представляющие существенный интерес формальные решения, коэффициенты которых служат ответами к естественным задачам перечисления. Подобные решения, в соответствии с конструкцией Сато, выражаются в терминах диаграмм Юнга и многочленов Шура. Характерным примером такого решения служит потенциал Виттена-Концевича, порождающий некоторые геометрические характеристики пространств модулей кривых. Для таких решений уравнения иерархии воспринимаются как рекуррентные соотношения, позволяющие эффективно вычислять коэффициенты формального разложения функции в степенной ряд. В докладе будет рассказано, как строить решения иерархии Кадомцева-Петвиашвили с помощью многочленов Шура, и будут приведены примеры, обнаруженные в том числе в последние годы, содержательных перечислительных задач, порождающих подобные решения.


© МИАН, 2024