|
СЕМИНАРЫ |
Общеинститутский математический семинар Санкт-Петербургского отделения Математического института им. В. А. Стеклова РАН
|
|||
|
Аттракторы динамических систем В. А. Клепцынab a Институт математических исследований, г. Ренн, Франция b Независимый университет, Москва |
|||
Аннотация: Одним из самых важных вопросов в теории динамических систем является вопрос описания предельного поведения системы. Аттрактор — множество состояний, к которому система с течением времени стремится; однако, при попытке формализовать это понятие получаются где-то с десяток различных определений, причём различных не просто формально, но и задающих — для некоторых систем — различные множества. Впрочем, на текущий момент все известные примеры такого несовпадения не являются типичными. Это и утверждает гипотеза Палиса — что для (метрически) типичной системы все определения аттрактора приводят к одному и тому же множеству, распадающемуся на конечное число компонент, на каждой из которых имеется мера Синая-Рюэлля-Боуэна. В докладе мы рассмотрим известные определения аттракторов, и разберём как известные примеры их несовпадения, так и некоторые новые и недавно обнаруженные эффекты: явление перемежаемости аттракторов (появившееся в работах Кана, Милнора и Бонифант, и Ильяшенко, Салтыкова и докладчика), «невидимые» аттракторы (Негут, Ильяшенко, «каскадный» вариант в работе Волка и Ильяшенко), топологически типичный пример Бонатти-Ли-Янг аттрактора, не окружённого областью поглощения. Доклад будет обзорным: никаких предварительных знаний от слушателей не предполагается. |