RUS  ENG
Полная версия
СЕМИНАРЫ

Заседания Московского математического общества
25 марта 2014 г., г. Москва, ГЗ МГУ, аудитория 16-10


Границы, инвариантные меры, характеры и внутренние метрики

А. М. Вершик



Аннотация: Широкий класс задач анализа, теории случайных процессов, теории представлений и асимптотической комбинаторики сводится к отысканию множества инвариантных мер относительно действия той или иной группы, или того или иного отношения эквивалентности. Таковы задачи о границе-выход (вход) случайного процесса, о границе Пуассона–Фюрстенберга случайного блуждания, о списке гармонических функций, о фазовых переходах, о характерах групп и следах алгебр, и, собственно, об инвариантных мерах динамической системы. В последнем случае хорошо известно, что задача описания инвариантных мер может быть «гладкой», — множество неразложимых инвариантных мер компактно в некоторои топологии, и «негладкой», когда компактной параметризации ответа не существует. Обе возможности реализуются и в других упомянытых задачах (например в задаче о следах), что менее известно. Как различить эти два случая? Как найти эту «некоторую» топологию?
Наиболее интересный случай: меры, инваринатные относительно хвостового отношения эквивалентности в пространстве путей градуированного графа (диаграммы Браттели) или границы-выход марковской нестационарнои цепи. К нему сводятся все гиперконечные (аменабельные) примеры. Используя общее понятие стандарнтости из теории фильтраций (теории убывающих последовательностей сигма-алгебр) можно определить так называемую внутреннюю топологию на пространстве путей графа, которая дает метод описания инвариантных мер в гладком (компактном) случае.
Будет рассмотрен ряд примеров (графы Паскаля — многомерная теорема де Финетти, Юнга — теорема Тома и др.). Все необходимые понятия будут определены в докладе.


© МИАН, 2024