Аннотация:
Предложена физическая модель наблюдаемой ранее в экспериментах коагуляции (взаимного сближения) сферических жидких, твердых и газообразных дисперсных элементов (диаметром до 1 см) в полярных жидких и вязкоупругой тиксотропной матрицах в случае полной изоляции системы от внешних сил, а также градиентных температурных и концентрационных полей. Показано, что при наличии межфазного натяжения на границе раздела матрица – сферический дисперсный элемент, т. е. когда на вогнутой границе матрицы капиллярное давление отрицательно, в полярной жидкой или вязкоупругой матрице формируется слабый градиент поля напряжений. Если вторая дисперсная частица попадает в это поле, то на нее действует результирующая сила в направлении первой частицы, что и обеспечивает их коагуляцию на больших отрезках времени.