Аннотация:
Рассматривается математическая модель среды, состоящей из активных частиц, способных корректировать свое движение в зависимости от так называемых сигналов или стимулов. Такие модели применяются, например, при изучении роста живых тканей, колоний микроорганизмов и более высокоорганизованных популяций. Исследуется взаимодействие частиц двух видов, один из которых (хищник) преследует другой (жертву). При этом перемещение хищника описывается уравнением типа уравнения теплопроводности Каттанео, а жертва способна лишь диффундировать. С учетом гиперболичности модели Каттанео при достаточно слабой диффузии жертв можно предположить наличие долгоживущих коротковолновых структур. Однако выявлен механизм неустойчивости и разрушения таких структур. В явной форме выражены соотношения между транспортными коэффициентами хищника, блокирующие этот механизм.
Ключевые слова:системы Патлака–Келлера–Сегел, модель Каттанео хемосенситивного движения, формирование пространственных структур, осреднение, гомогенизация, устойчивость, неустойчивость, бифуркация.
УДК:517.958:57
Поступила в редакцию: 20.05.2024 Исправленный вариант: 20.05.2024 Принята в печать: 03.06.2024