Аннотация:
Граф $G$ называется дробным $(g,f)$-покрытым, если для любого $e\in E(G)$ граф $G$ допускает дробный $(g,f)$-фактор, покрывающий $e$. Граф $G$ называется дробным $(g,f,n)$-предельным покрытым графом, если для любого $S\subseteq V(G)$, такого что $|S|=n$, граф $G-S$ является $(g,f)$-покрытым графом. Скажем, что дробный $(g,f,n)$-предельный покрытый граф является дробным $(a,b,n)$-предельным покрытым графом, если $g(x)=a$ и $f(x)=b$ для любого $x\in V(G)$. Дробные $(a,b,n)$-предельные покрытые графы были впервые введены и исследованы в работе [1]. В настоящей статье мы исследуем $(g,f,n)$-предельные покрытые графы и приводим условие их существования в терминах связующего числа. Таким образом, мы улучшили и обобщили предыдущие результаты, полученные в работе [2].