Аннотация:
В 1933 г. Борсук сформулировал ставшую классической гипотезу о том, что минимальное число частей меньшего диаметра, на которые может быть разбито произвольное множество диаметра $1$ в $\mathbb{R}^n$, равно $n+1$. В 1993 г. гипотеза была опровергнута с помощью совокупностей точек с координатами $0$ и $1$. Позже вторым автором статьи были получены более сильные контрпримеры, основанные на семействах точек с координатами $-1,0,1$. В настоящей статье устанавливаются новые нижние оценки для чисел Борсука в семействах такого типа.