Аннотация:
Рассматривается подход, позволяющий выявить, для каких задач нужны суперкомпьютеры эксафлопсного класса. Возможности подхода рассмотрены на примерах актуальных задач материаловедения, физики конденсированного вещества и плотной плазмы, для решения которых необходимо атомистическое моделирование на современных и создаваемых в настоящее время суперкомпьютерах. Для каждой задачи проведено соответствие между набором изучаемых явлений и требуемым уровнем быстродействия (числа ядер) вычислительной системы. Показана масштабируемость параллельных программ моделирования и перспектива расширения предсказательной способности методов по мере увеличения числа вычислительных ядер и/или использования специализированных архитектур (графические ускорители). Рассмотрена иерархия методов моделирования, необходимых для адекватного описания свойств веществ на различных пространственных и временных масштабах. На наиболее глубоком нанометровом/пикометровом масштабе для моделирования электронной динамики и построения эффективных потенциалов взаимодействия частиц применяется теория функционала плотности (квантовая молекулярная динамика). Классический метод молекулярной динамики позволяет явно рассмотреть системы движущихся атомов вплоть до микромасштабов. Выход на макромасштабы осуществляется с помощью кинетических подходов и механики сплошных сред. Проведены сравнения эффективности распараллеливания для топологий тора и толстого дерева для трёх классов задач.