Аннотация:
В работе рассматриваются логико-динамические системы — особый класс дискретно-непрерывных управляемых систем. Дискретная компонента в этих системах представляет собой целочисленную функцию, которая имеет конечное число точек разрыва. Для такого рода систем ставится задача оптимального управления. Рассматриваемая задача отличается от классической задачи оптимального управления тем, что в правых частях дифференциальных уравнений и функционале имеются дискретные переменные. В работах А. С. Бортаковского приводятся достаточные условия оптимальности, доказанные для функции Беллмана. Но эта теорема верна для любой функции Кротова, что и доказано автором этой работы. Также в статье описан подход к построению вычислительных процедур для данной задачи.
Ключевые слова и фразы:оптимальное управление, достаточные условия оптимальности.
УДК:517.977
Поступила в редакцию: 13.02.2011 Подписана в печать : 11.03.2011