Аннотация:
Показана актуальность выявления табличной информации и распознавания её содержимого для обработки отсканированных документов. Описано формирование набора данных для обучения, валидации и тестирования нейронной сети глубокого обучения (DNN) YOLOv5s для обнаружения простых таблиц. Отмечена эффективность использования этой DNN при работе с отсканированными документами. С использованием Keras Functional API сформирована свёрточная нейронная сеть (CNN) для распознавания основных элементов табличной информации— цифр, основных знаков препинания и букв кириллицы. Приведены результаты исследования работы этой CNN. Описана реализация выявления и распознавания табличной информации на отсканированных документах в разработанной ИС актуализации информации в базах данных системы ЕГРН Росреестра.
Ключевые слова и фразы:Свёрточные нейронные сети, нейронные сети глубокого обучения, CNN, DNN, YOLOv5s, Keras, Python.