RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2009, том 14, выпуск 6, страницы 615–620 (Mi rcd1002)

Эта публикация цитируется в 15 статьях

Superintegrable system on a sphere with the integral of higher degree

A. V. Borisov, A. A. Kilin, I. S. Mamaev

Institute of Computer Science, Udmurt State University, ul. Universitetskaya 1, Izhevsk, 426034 Russia

Аннотация: We consider the motion of a material point on the surface of a sphere in the field of $2n+1$ identical Hooke centers (singularities with elastic potential) lying on a great circle. Our main result is that this system is superintegrable. The property of superintegrability for this system has been conjectured by us in [1], where the structure of a superintegral of arbitrarily high odd degree in momemnta was outlined. We also indicate an isomorphism between this system and the one-dimensional $N$-particle system discussed in the recent paper [2] and show that for the latter system an analogous superintegral can be constructed.

Ключевые слова: superintegrable systems, systems with a potential, Hooke center.

MSC: 70Hxx, 70H06, 70G65, 37J35, 70F10

Поступила в редакцию: 21.10.2009
Принята в печать: 16.11.2009

Язык публикации: английский

DOI: 10.1134/S156035470906001X



Реферативные базы данных:


© МИАН, 2025