Аннотация:
We consider the motion of a material point on the surface of a sphere in the field of $2n+1$ identical Hooke centers (singularities with elastic potential) lying on a great circle. Our main result is that this system is superintegrable. The property of superintegrability for this system has been conjectured by us in [1], where the structure of a superintegral of arbitrarily high odd degree in momemnta was outlined. We also indicate an isomorphism between this system and the one-dimensional $N$-particle system discussed in the recent paper [2] and show that for the latter system an analogous superintegral can be constructed.
Ключевые слова:
superintegrable systems, systems with a potential, Hooke center.