RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2009, том 14, выпуск 6, страницы 621–634 (Mi rcd1003)

Эта публикация цитируется в 8 статьях

Separation of variables in the generalized 4th Appelrot class. II. Real solutions

M. P. Kharlamov

Volgograd Academy of Public Administration, ul. Gagarina 8, Volgograd, 400131 Russia

Аннотация: We continue the analytical solution of the integrable system with two degrees of freedom arising as the generalization of the 4th Appelrot class of motions of the Kowalevski top for the case of two constant force fields [Kharlamov, RCD, vol. 10, no. 4]. The separated variables found in [Kharlamov, RCD, vol. 12, no. 3] are complex in the most part of the integral constants plane. Here we present the real separating variables and obtain the algebraic expressions for the initial Euler–Poisson variables. The finite algorithm of establishing the topology of regular integral manifolds is described. The article straightforwardly refers to some formulas from [Kharlamov, RCD, vol. 12, no. 3].

Ключевые слова: Kowalevski top, double field, Appelrot classes, separation of variables.

MSC: 70E17, 70G40

Поступила в редакцию: 18.06.2009
Принята в печать: 24.08.2009

Язык публикации: английский

DOI: 10.1134/S1560354709060021



Реферативные базы данных:


© МИАН, 2025