RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2009, том 14, выпуск 6, страницы 656–672 (Mi rcd1005)

Эта публикация цитируется в 8 статьях

Bifurcations in systems with friction: basic models and methods

A. P. Ivanov

Moscow Institute of Physics and Technology (State University), Institutskii per. 9, Dolgoprudny, Moscow Region, 141700 Russia

Аннотация: Examples of irregular behavior of dynamical systems with dry friction are discussed. A classification of frictional contacts with respect to their dimensionality, associativity, and the possibility of interruptions is proposed and basic models showing typical features are stated. In particular, bifurcation conditions for equilibrium families are obtained and formulas for the monodromy matrix for systems with friction are constructed. It is shown that systems with non-associated contacts possess singularities that lead to the nonexistence or nonuniqueness of phase trajectories; these results generalize the paradoxes of Painlevé and Jellett. Owing to such behavior, a number of earlier results, including the problem on the motion of a rigid body on a rough plane, require an improvement.

Ключевые слова: non-smooth dynamical systems, dry friction, discontinuous bifurcation.

MSC: 70K50

Поступила в редакцию: 18.03.2009
Принята в печать: 26.05.2009

Язык публикации: английский

DOI: 10.1134/S1560354709060045



Реферативные базы данных:


© МИАН, 2024