RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2019, том 24, выпуск 5, страницы 560–582 (Mi rcd1026)

Эта публикация цитируется в 17 статьях

Sergey Chaplygin Memorial Issue

Different Models of Rolling for a Robot Ball on a Plane as a Generalization of the Chaplygin Ball Problem

Ivan A. Bizyaevab, Alexey V. Borisovc, Ivan S. Mamaevd

a Moscow Institute of Physics and Technology, Institutskii per. 9, Dolgoprudnyi, 141700 Russia
b Center for Technologies in Robotics and Mechatronics Components, Innopolis University, ul. Universitetskaya 1, Innopolis, 420500 Russia
c Udmurt State University, ul. Universitetskaya 1, Izhevsk, 426034 Russia
d Institute of Mathematics and Mechanics of the Ural Branch of RAS, ul. S. Kovalevskoi 16, Ekaterinburg, 620990 Russia

Аннотация: This paper addresses the problem of the rolling of a spherical shell with a frame rotating inside, on which rotors are fastened. It is assumed that the center of mass of the entire system is at the geometric center of the shell.
For the rubber rolling model and the classical rolling model it is shown that, if the angular velocities of rotation of the frame and the rotors are constant, then there exists a noninertial coordinate system (attached to the frame) in which the equations of motion do not depend explicitly on time. The resulting equations of motion preserve an analog of the angular momentum vector and are similar in form to the equations for the Chaplygin ball. Thus, the problem reduces to investigating a two-dimensional Poincaré map.
The case of the rubber rolling model is analyzed in detail. Numerical investigation of its Poincaré map shows the existence of chaotic trajectories, including those associated with a strange attractor. In addition, an analysis is made of the case of motion from rest, in which the problem reduces to investigating the vector field on the sphere $S^2$.

Ключевые слова: nonholonomic mechanics, Chaplygin ball, rolling without slipping and spinning, strange attractor, straight-line motion, stability, limit cycle, balanced beaver-ball.

MSC: 37J60, 37C10

Поступила в редакцию: 08.07.2019
Принята в печать: 26.08.2019

Язык публикации: английский

DOI: 10.1134/S1560354719050071



Реферативные базы данных:


© МИАН, 2024