RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2019, том 24, выпуск 6, страницы 671–681 (Mi rcd1032)

Conic Lagrangian Varieties and Localized Asymptotic Solutions of Linearized Equations of Relativistic Gas Dynamics

Anna I. Alliluevaabc, Andrei I. Shafarevichcabd

a Moscow Institute of Physics and Technology, Institutskii per. 9, Dolgoprudnyi, 141700 Russia
b National Research Centre “Kurchatov Institute”, pl. Akademika Kurchatova 1, Moscow, 123182 Russia
c Institute for Problems in Mechanics, pr. Vernadskogo 101-1, Moscow, 119526 Russia
d M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics, Leninskie Gory 1, Moscow, 119991 Russia

Аннотация: We study asymptotic solution of the Cauchy problem for the linearized system of relativistic gas dynamics. We assume that initial condiditiopns are strongly localized near a space-like surface in the Minkowsky space. We prove that the solution can be decomposed into three modes, corresponding to different routsb of the equations of characteristics. One of these roots is twice degenerate and the there are no focal points in the corresponding miode. The other two roots are simple; in order to describe the corresponding modes, we use the modificication of the Maslov’s canonical operator which was obtained recently.

Ключевые слова: Conic Lagrangian varieties, Maslov’s canonical operator, relativistic gas dynamics.

MSC: 35A30, 35B40, 53D12

Поступила в редакцию: 23.10.2019
Принята в печать: 08.11.2019

Язык публикации: английский

DOI: 10.1134/S1560354719060066



Реферативные базы данных:


© МИАН, 2024