Эта публикация цитируется в
4 статьях
Jumps of Energy Near a Homoclinic Set of a Slowly Time Dependent Hamiltonian System
Sergey V. Bolotinab a University of Wisconsin-Madison,
480 Lincoln Dr., Madison, WI 53706-1325, USA
b Steklov Mathematical Institute, Russian Academy of Sciences,
ul. Gubkina 8, Moscow, 119991 Russia
Аннотация:
We consider a Hamiltonian system depending on a parameter which slowly changes with rate
$\varepsilon \ll 1$. If trajectories of the frozen autonomous system are periodic, then the system has adiabatic invariant which changes much slower than energy. For a system with 1 degree of freedom and a figure 8 separatrix, Anatoly Neishtadt [18] showed that for trajectories crossing the separatrix, the adiabatic invariant, and hence the energy, have quasirandom jumps of order
$\varepsilon$. We prove a partial analog of Neishtadt's result for a system with
$n$ degrees of freedom such that the frozen system has a hyperbolic equilibrium possessing several homoclinic orbits. We construct trajectories staying near the homoclinic set with energy having jumps of order
$\varepsilon$ at time intervals of order
$|\ln\varepsilon|$, so the energy may grow with rate
$\varepsilon/|\ln\varepsilon|$. Away from the homoclinic set faster energy growth is possible: if the frozen system has chaotic behavior, Gelfreich and Turaev [16] constructed trajectories with energy growth rate of order
$\varepsilon$.
Ключевые слова:
Hamiltonian system, homoclinic orbit, action functional, Poincare function, symplectic relation, separatrix map, adiabatic invariant.
MSC: 37D,
37J,
70H Поступила в редакцию: 22.10.2019
Принята в печать: 07.11.2019
Язык публикации: английский
DOI:
10.1134/S1560354719060078