RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2019, том 24, выпуск 6, страницы 682–703 (Mi rcd1033)

Эта публикация цитируется в 3 статьях

Jumps of Energy Near a Homoclinic Set of a Slowly Time Dependent Hamiltonian System

Sergey V. Bolotinab

a University of Wisconsin-Madison, 480 Lincoln Dr., Madison, WI 53706-1325, USA
b Steklov Mathematical Institute, Russian Academy of Sciences, ul. Gubkina 8, Moscow, 119991 Russia

Аннотация: We consider a Hamiltonian system depending on a parameter which slowly changes with rate $\varepsilon \ll 1$. If trajectories of the frozen autonomous system are periodic, then the system has adiabatic invariant which changes much slower than energy. For a system with 1 degree of freedom and a figure 8 separatrix, Anatoly Neishtadt [18] showed that for trajectories crossing the separatrix, the adiabatic invariant, and hence the energy, have quasirandom jumps of order $\varepsilon$. We prove a partial analog of Neishtadt's result for a system with $n$ degrees of freedom such that the frozen system has a hyperbolic equilibrium possessing several homoclinic orbits. We construct trajectories staying near the homoclinic set with energy having jumps of order $\varepsilon$ at time intervals of order $|\ln\varepsilon|$, so the energy may grow with rate $\varepsilon/|\ln\varepsilon|$. Away from the homoclinic set faster energy growth is possible: if the frozen system has chaotic behavior, Gelfreich and Turaev [16] constructed trajectories with energy growth rate of order $\varepsilon$.

Ключевые слова: Hamiltonian system, homoclinic orbit, action functional, Poincare function, symplectic relation, separatrix map, adiabatic invariant.

MSC: 37D, 37J, 70H

Поступила в редакцию: 22.10.2019
Принята в печать: 07.11.2019

Язык публикации: английский

DOI: 10.1134/S1560354719060078



Реферативные базы данных:


© МИАН, 2024