RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2019, том 24, выпуск 6, страницы 739–754 (Mi rcd1037)

Эта публикация цитируется в 2 статьях

On the Chaplygin Sphere in a Magnetic Field

Alexey V. Borisova, Andrey V. Tsiganovb

a Udmurt State University, ul. Universitetskaya 1, Izhevsk, 426034 Russia
b Steklov Mathematical Institute, Russian Academy of Sciences, ul. Gubkina 8, Moscow, 119991 Russia

Аннотация: We consider the possibility of using Dirac’s ideas of the deformation of Poisson brackets in nonholonomic mechanics. As an example, we analyze the composition of external forces that do no work and reaction forces of nonintegrable constraints in the model of a nonholonomic Chaplygin sphere on a plane. We prove that, when a solenoidal field is applied, the general mechanical energy, the invariant measure and the conformally Hamiltonian representation of the equations of motion are preserved. In addition, we consider the case of motion of the nonholonomic Chaplygin sphere in a constant magnetic field taking dielectric and ferromagnetic (superconducting) properties of the sphere into account. As a by-product we also obtain two new integrable cases of the Hamiltonian rigid body dynamics in a constant magnetic field taking the magnetization by rotation effect into account.

Ключевые слова: nonholonomic mechanics, magnetic field, deformation of Poisson brackets, Grioli problem, Barnett – London moment.

MSC: 37J60, 70F25, 74F15

Поступила в редакцию: 08.10.2019
Принята в печать: 05.11.2019

Язык публикации: английский

DOI: 10.1134/S156035471906011X



Реферативные базы данных:


© МИАН, 2024