RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2020, том 25, выпуск 1, страницы 2–10 (Mi rcd1045)

Эта публикация цитируется в 9 статьях

Special issue: In honor of Valery Kozlov for his 70th birthday

A Map for Systems with Resonant Trappings and Scatterings

Anton V. Artemyevab, Anatoly I. Neishtadtbc, Alexei A. Vasilievb

a Institute of Geophysics and Planetary Physics, University of California, Los Angeles, 90095, USA
b Space Research Institute of RAS, ul. Profsoyuznaya 84/32, Moscow 117997, Russia
c Loughborough University, Loughborough LE11 3TU, UK

Аннотация: Slow-fast dynamics and resonant phenomena can be found in a wide range of physical systems, including problems of celestial mechanics, fluid mechanics, and charged particle dynamics. Important resonant effects that control transport in the phase space in such systems are resonant scatterings and trappings. For systems with weak diffusive scatterings the transport properties can be described with the Chirikov standard map, and the map parameters control the transition between stochastic and regular dynamics. In this paper we put forward the map for resonant systems with strong scatterings that result in nondiffusive drift in the phase space, and trappings that produce fast jumps in the phase space. We demonstrate that this map describes the transition between stochastic and regular dynamics and find the critical parameter values for this transition.

Ключевые слова: scattering on resonance, capture into resonance.

MSC: 37E40, 37M05

Поступила в редакцию: 09.04.2019
Принята в печать: 04.12.2019

Язык публикации: английский

DOI: 10.1134/S1560354720010025



Реферативные базы данных:


© МИАН, 2024