RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2020, том 25, выпуск 1, страницы 78–110 (Mi rcd1051)

Эта публикация цитируется в 1 статье

Special issue: In honor of Valery Kozlov for his 70th birthday

$N$-body Dynamics on an Infinite Cylinder: the Topological Signature in the Dynamics

Jaime Andradea, Stefanella Boattobc, Thierry Combotd, Gladston Duartecb, Teresinha J. Stuchie

a Departamento de Matemática, Facutad de Ciencias, Universidad del Bıi o-Bıi o, Casilla 5-C, Concepción, VIII-región, Chile
b Departamento de Matemática Aplicada, Instituto de Matemática, Universidade Federal de Rio de Janeiro, 68530, Rio de Janeiro, RJ, Brazil
c Barcelona Graduate School of Mathematics \& Departament de Matemàtiques i Informática, Universitat de Barcelona, Gran Via de les Corts Catalanes, 585, 08007, Barcelona, Spain
d Institut de Mathématiques de Bourgogne, Université de Bourgogne, 21078, Dijon, France
e Departamento de Fıisica-Matemática, Instituto de Fıisica, Universidade Federal de Rio de Janeiro, Rio de Janeiro, RJ, Brazil

Аннотация: The formulation of the dynamics of $N$-bodies on the surface of an infinite cylinder is considered. We have chosen such a surface to be able to study the impact of the surface’s topology in the particle’s dynamics. For this purpose we need to make a choice of how to generalize the notion of gravitational potential on a general manifold. Following Boatto, Dritschel and Schaefer [5], we define a gravitational potential as an attractive central force which obeys Maxwell’s like formulas.
As a result of our theoretical differential Galois theory and numerical study — Poincaré sections, we prove that the two-body dynamics is not integrable. Moreover, for very low energies, when the bodies are restricted to a small region, the topological signature of the cylinder is still present in the dynamics. A perturbative expansion is derived for the force between the two bodies. Such a force can be viewed as the planar limit plus the topological perturbation. Finally, a polygonal configuration of identical masses (identical charges or identical vortices) is proved to be an unstable relative equilibrium for all $N>2$.

Ключевые слова: $N$-body problem, Hodge decomposition, central forces on manifolds, topology and integrability, differential Galois theory, Poincaré sections, stability of relative equilibria.

MSC: 37J30, 37J25, 53Z05, 70G60, 70H05

Поступила в редакцию: 24.12.2019
Принята в печать: 10.01.2020

Язык публикации: английский

DOI: 10.1134/S1560354720010086



Реферативные базы данных:


© МИАН, 2024