RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2020, том 25, выпуск 3, страницы 250–272 (Mi rcd1062)

On the Convex Central Configurations of the Symmetric $(l+2)$-body Problem

Montserrat Corberaa, Jaume Llibreb, Pengfei Yuanc

a Departament d’Enginyeries, Universitat de Vic-Universitat Central de Catalunya, 08500 Vic, Barcelona, Spain
b Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
c School of Mathematics and Statistics, Southwest University, 400715, Chongqing, China

Аннотация: For the $4$-body problem there is the following conjecture: Given arbitrary positive masses, the planar $4$-body problem has a unique convex central configuration for each ordering of the masses on its convex hull. Until now this conjecture has remained open. Our aim is to prove that this conjecture cannot be extended to the $(\ell+2)$-body problem with $\ell \geqslant 3$. In particular, we prove that the symmetric $(2n+1)$-body problem with masses $m_1=\ldots=m_{2n-1}=1$ and $m_{2n}=m_{2n+1}=m$ sufficiently small has at least two classes of convex central configuration when $n=2$, five when $n=3$, and four when $n=4$. We conjecture that the $(2n+1)$-body problem has at least $n $ classes of convex central configurations for $n>4$ and we give some numerical evidence that the conjecture can be true. We also prove that the symmetric $(2n+2)$-body problem with masses $m_1=\ldots=m_{2n}=1$ and $m_{2n+1}=m_{2n+2}=m$ sufficiently small has at least three classes of convex central configuration when $n=3$, two when $n=4$, and three when $n=5$. We also conjecture that the $(2n+2)$-body problem has at least $[(n+1)/2]$ classes of convex central configurations for $n>5$ and we give some numerical evidences that the conjecture can be true.

Ключевые слова: convex central configurations, $(l+2)$-body problem.

MSC: 70F10, 70F15

Поступила в редакцию: 22.01.2020
Принята в печать: 26.04.2020

Язык публикации: английский

DOI: 10.1134/S1560354720030028



Реферативные базы данных:


© МИАН, 2024