RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2020, том 25, выпуск 5, страницы 412–423 (Mi rcd1075)

Nonequilibrium Molecular Dynamics, Fractal Phase-Space Distributions, the Cantor Set, and Puzzles Involving Information Dimensions for Two Compressible Baker Maps

William G. Hoover, Carol G. Hoover

Ruby Valley Research Institute, Highway Contract 60, Box 601 Ruby Valley, 89833 NV, USA

Аннотация: Deterministic and time-reversible nonequilibrium molecular dynamics simulations typically generate “fractal” (fractional-dimensional) phase-space distributions. Because these distributions and their time-reversed twins have zero phase volume, stable attractors “forward in time” and unstable (unobservable) repellors when reversed, these simulations are consistent with the second law of thermodynamics. These same reversibility and stability properties can also be found in compressible baker maps, or in their equivalent random walks, motivating their careful study. We illustrate these ideas with three examples: a Cantor set map and two linear compressible baker maps, N2$(q,p)$ and N3$(q,p)$. The two baker maps’ information dimensions estimated from sequential mappings agree, while those from pointwise iteration do not, with the estimates dependent upon details of the approach to the maps’ nonequilibrium steady states.

Ключевые слова: chaos, Lyapunov exponents, irreversibility, random walks, maps, information dimension.

Поступила в редакцию: 26.04.2020
Принята в печать: 31.07.2020

Язык публикации: английский



© МИАН, 2024