RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2020, том 25, выпуск 6, страницы 581–596 (Mi rcd1085)

Shape-invariant Neighborhoods of Nonsaddle Sets

Martin Shoptrajanov, Nikita Shekutkovski

Institute of Mathematics/Ss. Cyril and Methodius University, ul. Arhimedova 3, 1000 Skopje, R.N. Macedonia

Аннотация: Asymptotically stable attractors are only a particular case of a large family of invariant compacta whose global topological structure is regular. We devote this paper to investigating the shape properties of this class of compacta, the nonsaddle sets. Stable attractors and unstable attractors having only internal explosions are examples of nonsaddle sets. The main aim of this paper is to generalize the well-known theorem for the shape of attractors to nonsaddle sets using the intrinsic approach to shape which combines continuity up to a covering and the corresponding homotopies of first order.

Ключевые слова: shape, intrinsic shape, attractor, nonsaddle set, regular covering, proximate sequence, Lyapunov function.

MSC: 54H20, 54C56, 37B20, 37B25

Поступила в редакцию: 03.09.2020
Принята в печать: 23.10.2020

Язык публикации: английский

DOI: 10.1134/S1560354720060064



Реферативные базы данных:


© МИАН, 2024