RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2020, том 25, выпуск 6, страницы 662–673 (Mi rcd1089)

Эта публикация цитируется в 1 статье

Rheonomic Systems with Nonlinear Nonholonomic Constraints: The Voronec Equations

Federico Talamucci

Dept. of Mathematics and Informatics, University of Florence, Vial G. B. Morgagni 67a, 50134 Florence, Italy

Аннотация: One of the earliest formulations of dynamics of nonholonomic systems traces back to 1895 and is due to Chaplygin, who developed his analysis under the assumption that a certain number of the generalized coordinates do not occur either in the kinematic constraints or in the Lagrange function. A few years later Voronec derived equations of motion for nonholonomic systems removing the restrictions demanded by the Chaplygin systems. Although the methods encountered in the following years favor the use of the quasi-coordinates, we will pursue the Voronec method, which deals with the generalized coordinates directly. The aim is to establish a procedure for extending the equations of motion to nonlinear nonholonomic systems, even in the rheonomic case.

Ключевые слова: nonholonomic systems, nonlinear constraints, Lagrangian equations of motion.

MSC: 70H03, 37J60, 70F25

Поступила в редакцию: 19.06.2020
Принята в печать: 10.09.2020

Язык публикации: английский

DOI: 10.1134/S1560354720060106



Реферативные базы данных:


© МИАН, 2024